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An analytic ground state is proposed for the unbiased spin-boson Hamiltonian, which is non-
Gaussian and beyond the Silbey-Harris ground state with lower ground state energy. The infrared
catastrophe in Ohmic and sub-Ohmic bosonic bath plays an important role in determining the de-
generacy of the ground state. We show that the infrared divergence associated with the displacement
of the nonadiabatic modes in bath may be removed from the proposed ground state for the coupling
α < αc. Then αc is the quantum critical point of a transition from non-degenerate to degenerate
ground state and our calculated αc agrees with previous numerical results. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4803661]

I. INTRODUCTION

Quantum impurity systems with competing interactions
constitute a field of wide interest in the quantum physics. In
recent years, the quantum two-level system coupled to dissi-
pative bosonic environment (spin-boson model, SBM) attracts
much attention in this field because it may be one of the sim-
plest but nontrivial quantum impurity system for studying the
physics of competing interactions. The Hamiltonian of SBM
reads (we set ¯ = 1)

H = −1

2
�σx +

∑
k

ωkb
†
kbk + 1

2

∑
k

gk

(
b
†
k + bk

)
σz, (1)

where b
†
k (bk) is the creation (annihilation) operator of envi-

ronmental bosonic mode with frequency ωk, σ x, and σ z are
Pauli matrices to describe the two-level system. The compet-
ing interactions in SBM are between the quantum tunneling
� and the dissipative coupling gk to the environment. The ef-
fect of the environment is characterized by a spectral density
J (ω) = ∑

k g2
k δ(ω − ωk) = 2αωsω1−s

c θ (ωc − ω) with the di-
mensionless coupling strength α and the hard upper cutoff at
ωc. The index s accounts for various physical situations:1, 2

the Ohmic s = 1, sub-Ohmic s < 1, and super-Ohmic s > 1
baths.

The quantum critical point (QCP) and the quantum
phase transition (QPT) are related to the ground state tran-
sition, which is usually triggered by competing interactions.
As for SBM, the interesting phase transition is related to
the transition of degeneracy of the ground state, that is, it
is a transition between the non-degenerate and degenerate
ground state.1–5 The main theoretical interest of the QCP
in SBM is to understand how the competing interactions
influences the degeneracy of the ground state. Since the
Hamiltonian (1) is invariant under σ z → −σ z (together with
bk, b

†
k → −bk,−b

†
k) and one must have 〈σ z〉G = 0 (〈. . . 〉G

means the ground state average). However, for the Ohmic bath

s = 1 it is well known1, 2 that a Kosterlitz-Thouless quantum
transition separates a degenerate ground state at α > αc from
a non-degenerate one at α < αc (αc = 1 in the scaling limit
� � ωc).

The ground state of SBM Hamiltonian (1) was studied
by many authors using various analytic and numerical meth-
ods. Silbey and Harris (SH)6 proposed a variational ground
state and predicted the QCP αc = 1 for s = 1. The SH
ground state was used by Kehrein and Mielke7 for sub-Ohmic
(s < 1) bath to calculate the QCP αc. In last ten years, various
numerical techniques were used for calculation of the QCP
in the SBM, such as the numerical renormalization group
(NRG),3–5 the quantum Monte Carlo (QMC),8 the method
of sparse polynomial space representation,9 the extended co-
herent state approach,10 and the variational matrix product
state approach.11 Besides, recently an extension of the Silbey-
Harris ground state was proposed by Zhao et al.12 and Chin
et al.13 to study the QPT in the s = 1/2 sub-Ohmic SBM.

In this work, we propose an analytic ground state wave-
function for the SBM, which is non-Gaussian for the bath
modes and is an extension of the work of Zhao et al.12 and
Chin et al.13 The QPT is usually not a weak coupling prob-
lem and people believe that the numerical techniques may be
more powerful than approximate analytic methods for strong
coupling problem. Then, why do we still try to find an ap-
proximate analytical solution? Generally speaking, our pur-
pose is to see and understand the physics more clearly and
straightforwardly. In particular, here our purpose is to under-
stand the role played by the infrared divergence in the SBM
Hamiltonian (1).

The QPT in quantum impurity systems may be related
to the infrared catastrophe in baths. Anderson14 was the first
to point out this relation for the Anderson model and Kondo
model in fermionic bath. Our question is: What is the role
played by the infrared catastrophe in the quantum phase tran-
sition in bosonic bath of SBM?
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II. THE GROUND STATE

If � = 0, Hamiltonian (1) is solvable and we have de-
generate ground state

|ψ↑(↓)〉 = exp

[
−

∑
k

gk

(
b
†
k − bk

)
σz/2ωk

]
| ↑ (↓)〉|{0k}〉,

(2)

where |↑(↓)〉 is the eigenstate of σ z: σ z|↑(↓)〉 = +( − )|↑(↓)〉
and |{0k}〉 is the vacuum state of the bath. Then, for finite
� it is naturally to use a superposed ground state to remove
the degeneracy. But it is well known1, 2, 6, 7 that there exists
an infrared divergence in the overlap between the degenerate
states: 〈ψ↑|ψ↓〉 = exp[−∑

k g2
k/2ω2

k] = 0 for s ≤ 1. Silbey
and Harris proposed a modified superposed ground state6

|GSH〉 = exp

[
−

∑
k

gk

(
b
†
k − bk

)
σz/2(ωk + η0�)

]
2−1/2

× (| ↑〉 + | ↓〉)|{0k}〉, (3)

with finite renormalized overlap η0 = exp[−∑
k g2

k/2(ωk

+ η0�)2] where the infrared divergence has been removed.
The ground state energy is

ESH
g = −η0�/2 −

∑
k

g2
k (ωk + 2η0�)/4(ωk + η0�)2.

(4)

For the SH ground state at the scaling limit � � ωc,
η0 = (e�/ωc)

α
1−α for s = 1 and thus the QCP is at αSH

c = 1
where η0 = 0. For sub-ohmic bath s < 1 one can calculate the
QCP by condition: η0 = 0 at α → αSH

c ,7, 15 and some results
are listed in the second column of Table I.

Zhao et al.12 and Chin et al.13 proposed an extension
of the Silbey-Harris ground state to study the QPT in the s
= 1/2 sub-Ohmic spin-boson model, with degenerate ground
state when zero-biased and α > αD

c (superscript “D” means
degenerate),

|
±〉 = exp(−S±)(u±| ↑〉 + v±| ↓〉)|{0k}〉, (5)

S± =
∑

k

gk

2ωk

(
b
†
k − bk

)
[ξkσz±(1 − ξk)φk], (6)

where u+ = v− = 2−1/2
√

1 + M , u− = v+ = 2−1/2
√

1 − M ,
ξk = ωk/(ωk + W ), W = η�/

√
1 − M2, and

η = exp

[
−

∑
k

g2
k ξ

2
k /2ω2

k

]
, (7)

TABLE I. QCP of different bath type s.

s αSH
c αD

c Our αc αc
3 αc

8 αc
9 αc

10

1/4 0.08554 0.02413 0.02744 0.0264 0.0254 0.0259 0.0256
1/2 0.1768 0.08555 0.1084 0.1065 0.0983 0.0977 0.0820
3/4 0.3537 0.2176 0.3076 0.3168 0.2951 0.2953 0.3205
1 1 0.5121 1 1 1 1 1

M =
∑

k

g2
kφk(1 − ξk)2/(ωkW ). (8)

Zhao et al.12 and Chin et al.13 let φk = M to be a constant in
Eqs. (6) and (8), where M( > 0) = 〈
+|σ z|
+〉 (〈
−|σ z|
−〉
= −M) is the bath-induced static displacement for the de-
generate ground state |
+〉 and |
−〉 with degenerate ground
state energy

ED
g = −W/2 −

∑
k

g2
k ξk(2 − ξk)/4ωk

+
∑

k

g2
kM

2(1 − ξk)2/4ωk. (9)

The first term in (9), −W/2 is the bath-renormalized energy
of the two-level system from its bare form −�/2. It was
proposed12, 13 that the QCP is at α = αD

c where a nonzero M
leads to lower ground state energy (note that when α ≤ αD

c ,
M = 0, and |
+〉 = |
−〉 = |GSH〉). Some αD

c values for dif-
ferent baths are listed in the third column of Table I. But, as
mentioned above, since the Hamiltonian (1) is invariant un-
der σ z → −σ z (together with bk, b

†
k → −bk,−b

†
k) we should

have 〈σ z〉G = 0.

III. INFRARED CATASTROPHE AND QPT

The wavefunction of every bath mode in |GSH〉 or |
±〉
is a Gaussian function, thus these ground states are in the
Gaussian approximation. Following the proposal of Shore and
Sander16 we propose the following superposed ground state
for the SBM, which is beyond the Gaussian approximation
and takes into account the effect of quantum fluctuations,

|G〉 = A(|
+〉 + |
−〉), (10)

where A is a normalization factor. Then, it is easy to check
that 〈G|σ z|G〉 = 0. But if one choose φk = M in Eqs. (6) and
(8), as was pointed out by Chin et al.,13 there is an infrared di-
vergence of the occupation number of the nonadiabatic (NA)
modes. We show that this divergence leads to the orthogonal-
ity catastrophe between |
+〉 and |
−〉,

ρ = 〈
−|
+〉

= 〈{0k}| exp

(
−

∑
k

gk

ωk

(1 − ξk)
(
b
†
k − bk

)
M

)
|{0k}〉

= exp

(
−

∑
k

g2
k

2ω2
k

(1 − ξk)2M2

)

= exp

(
−αM2W 2

∫
0

ωs−2dω

(ω + W )2

)
= 0 (11)

for Ohmic (s = 1) and sub-Ohmic (s < 1) baths as the integra-
tion in the exponential is infrared divergent. This is similar to
the infrared catastrophe in Fermi sea interacting with a quan-
tum impurity.14 Because of the orthogonality catastrophe the
ground states, |GD〉 = |
+〉, |GD〉 = |
−〉, or |G〉 (Eq. (10))
are degenerate with ground state energy (9).

The way to avoid the infrared catastrophe is similar to
the proposal of Anderson,14 that is, quantum fluctuation of
the NA modes leads to a k-dependent φk in Eqs. (6) and (8)
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removing the infrared divergence. Then the ground state en-
ergy Eg of the superposed ground state (10) is

Eg = (E0 + ρU )/(1 + ρ
√

1 − M2), (12)

where E0 = 〈
+|H|
+〉, ρ = 〈
+|
−〉, and ρU
= 〈
+|H|
−〉. Here

E0 = −W/2 −
∑

k

g2
k ξk(2 − ξk)/4ωk + Y, (13)

U =
√

1 − M2

(
−η2�2/2W −

∑
k

g2
k ξk(2 − ξk)/4ωk − Y

)

−η� [cosh(M) − 1 − M(sinh(M) − M)] /2, (14)

and Y = ∑
k g2

kφ
2
k (1 − ξk)2/4ωk .

The variational function φk can be determined by

∂Eg

∂φk

= 0 = ∂Eg

∂M

∂M

∂φk

+ ∂Eg

∂ρ

∂ρ

∂φk

+ ∂Eg

∂Y

∂Y

∂φk

(15)

for every mode k and the result is

φk = τωk/(ωk + ρδ), (16)

where δ = 2(E0

√
1 − M2 − U )/[(1 − ρ)(1 + ρ

√
1 − M2)]

and τ is the variational parameter. In this way, the overlap-
ping integral is

ρ = exp

(
−

∑
k

g2
k

2ω2
k

(1 − ξk)2φ2
k

)

= exp

(
−ατ 2W 2

∫
0

ωsdω

(ω + W )2(ω + ρδ)2

)
, (17)

which is finite as long as s > 0.
For s = 1 the result of variational calculation is shown in

Fig. 1. When α goes to 1, the variational parameter τ tends to
1 and the overlapping ρ decreases to zero as follows:

ρ =
[

δ

W

] ατ2

1−ατ2

exp

(
ατ 2

1 − ατ 2

[
ln(1 + W/ωc) + 2 + W/ωc

1 + W/ωc

])
,

(18)

FIG. 1. The variation parameter τ and the overlapping ρ as functions of α

for Ohmic bath s = 1.

FIG. 2. The ground state average of σ x as a function of α for Ohmic bath
s = 1. The solid line is the result of our non-Gaussian ground state and the
dashed line that of SH ground state.

that is, ρ → 0 when α → 1 − 0+ (0+ is a positive infinitesi-
mal) since τ → 1. This is to say that for s = 1 the ground state
becomes doubly degenerate when α → αc = 1. We note that,
although this is the same QCP for the Ohmic bath s = 1 as
the prediction of Silbey and Harris,6 the way to determine the
QCP is different. Reference 6 determines the QCP by η0 → 0
when α → αc, while we determine the QCP by the vanishing
overlapping ρ → 0. Figure 2 shows the ground state average
of σ x as a function of α for Ohmic bath s = 1. One can see
that our calculated average 〈G|σ x|G〉,

〈G|σx |G〉 = η {[cosh(M) − M sinh(M)]ρ

+η�/W } /(1 + ρη�/W ), (19)

is a finite quantity even if α = 1, but that of Ref. 6,
〈GSH|σx |GSH〉 = η0, goes to zero when α < ∼1.

For sub-Ohmic bath s < 1 Eq. (17) has to be solved nu-
merically and self-consistently, and the QCP αc can be de-
termined as the point where the ground state changes from
non-degenerate (α < αc) to doubly degenerate (α > αc). Our
results for some s values are shown in Table I. For

FIG. 3. Eg − ED
g is the difference between ground state energies calculated

by Eqs. (12) and (9). �/ωc = 0.1. See text for details.
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comparison, the numerical results by NRG,3 by QMC,8 by the
method of sparse polynomial space representation,9 and by
the extended coherent state approach10 are also shown. One
can see that our result compares well with these numerical
results.

Figure 3 shows the difference between our calculation of
the ground state energy and that of Zhao et al.12 and Chin
et al.,13 δEg = Eg − ED

g . The lower ground state energy in-
dicates that the ansatz of this work is a better one for the real
ground state.

We note that when s > 1 (super-Ohmic bath) the over-
lapping ρ in Eq. (17) has always a finite solution. This is to
say that the ground state of the SBM with super-Ohmic bath
is always non-degenerate and there is no QPT.

IV. CONCLUSION

We propose an analytic ground state wavefunction
for the unbiased spin-boson Hamiltonian, which is a
superposition of the two degenerate state and is non-Gaussian
for the bosonic bath modes. The infrared catastrophe in
Ohmic and sub-Ohmic bosonic bath plays an important role in
determining the degeneracy of the ground state and we show
that the infrared divergence associated with the displacement
of the nonadiabatic modes in bath may be removed from the
proposed ground state for the coupling α < αc. The QCP αc

is determined by the transition from non-degenerate to degen-
erate ground state. Our ground state energy is lower than pre-
vious authors’ results. The calculation of αc agrees well with
previous numerical results.
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